This document provides a breakdown of the statistical analysis from a research study.

Below loads the raw data file into the system and outputs the file list of headers in the data set.

# Import dataset
dat <- read.csv("DisgustData.csv")
# Return the names of the datset
names(dat)
##  [1] "Id"                                                                                                                                                                                                        
##  [2] "Start.Date"                                                                                                                                                                                                
##  [3] "Submit.Date"                                                                                                                                                                                               
##  [4] "IP"                                                                                                                                                                                                        
##  [5] "Please.type.your.age"                                                                                                                                                                                      
##  [6] "Please.select.your.sex"                                                                                                                                                                                    
##  [7] "The.established.authorities.generally.turn.out.to.be.right.about.things..while.the.radicals.and.protestors.are.usually.just..loud.mouths..showing.off.their.ignorance."                                    
##  [8] "Women.should.have.to.promise.to.obey.their.husbands.when.they.get.married."                                                                                                                                
##  [9] "Our.country.desperately.needs.a.mighty.leader.who.will.do.what.has.to.be.done.to.destroy.the.radical.new.ways.and.sinfulness.that.are.ruining.us."                                                         
## [10] "Gays.and.lesbians.are.just.as.healthy.and.moral.as.anybody.else."                                                                                                                                          
## [11] "It.is.always.better.to.trust.the.judgment.of.the.proper.authorities.in.government.and.religion.than.to.listen.to.the.noisy.rabble.rousers.in.our.society.who.are.trying.to.create.doubt.in.people.s.minds."
## [12] "Atheists.and.others.who.have.rebelled.against.the.established.religions.are.no.doubt.every.bit.as.good.and.virtuous.as.those.who.attend.church.regularly."                                                 
## [13] "The.only.way.our.country.can.get.through.the.crisis.ahead.is.to.get.back.to.our.traditional.values..put.some.tough.leaders.in.power..and.silence.the.troublemakers.spreading.bad.ideas."                   
## [14] "There.is.absolutely.nothing.wrong.with.nudist.camps."                                                                                                                                                      
## [15] "Our.country.needs.free.thinkers.who.have.the.courage.to.defy.traditional.ways..even.if.this.upsets.many.people."                                                                                           
## [16] "Our.country.will.be.destroyed.someday.if.we.do.not.smash.the.perversions.eating.away.at.our.moral.fiber.and.traditional.beliefs."                                                                          
## [17] "Everyone.should.have.their.own.lifestyle..religious.beliefs..and.sexual.preferences..even.if.it.makes.them.different.from.everyone.else."                                                                  
## [18] "The..old.fashioned.ways..and.the..old.fashioned.values..still.show.the.best.way.to.live."                                                                                                                  
## [19] "You.have.to.admire.those.who.challenged.the.law.and.the.majority.s.view.by.protesting.for.women.s.abortion.rights..for.animal.rights..or.to.abolish.school.prayer."                                        
## [20] "What.our.country.really.needs.is.a.strong..determined.leader.who.will.crush.evil..and.take.us.back.to.our.true.path."                                                                                      
## [21] "Some.of.the.best.people.in.our.country.are.those.who.are.challenging.our.government..criticizing.religion..and.ignoring.the..normal.way.things.are.supposed.to.be.done.."                                  
## [22] "God.s.laws.about.abortion..pornography.and.marriage.must.be.strictly.followed.before.it.is.too.late..and.those.who.break.them.must.be.strongly.punished."                                                  
## [23] "There.are.many.radical..immoral.people.in.our.country.today..who.are.trying.to.ruin.it.for.their.own.godless.purposes..whom.the.authorities.should.put.out.of.action."                                     
## [24] "A..woman.s.place..should.be.wherever.she.wants.to.be..The.days.when.women.are.submissive.to.their.husbands.and.social.conventions.belong.strictly.in.the.past."                                            
## [25] "Our.country.will.be.great.if.we.honor.the.ways.of.our.forefathers..do.what.the.authorities.tell.us.to.do..and.get.rid.of.the..rotten.apples..who.are.ruining.everything."                                  
## [26] "There.is.no..ONE.right.way..to.live.life..everybody.has.to.create.their.own.way."                                                                                                                          
## [27] "Homosexuals.and.feminists.should.be.praised.for.being.brave.enough.to.defy..traditional.family.values."                                                                                                    
## [28] "This.country.would.work.a.lot.better.if.certain.groups.of.troublemakers.would.just.shut.up.and.accept.their.group.s.traditional.place.in.society."                                                         
## [29] "On.a.rating.of.1.to.10.how.likely.would.you.be.to.eat.a.cooked.cricket..an.insect.similar.to.a.grasshopper.or.locust.."                                                                                    
## [30] "On.a.rating.of.1.to.10.how.likely.would.you.be.to.eat.a.food.that.contains.cricket.flour."                                                                                                                 
## [31] "Select.a.group"                                                                                                                                                                                            
## [32] "On.a.rating.of.1.to.10.how.likely.would.you.be.to.eat.a.food.that.contains.cricket.flour..1"                                                                                                               
## [33] "On.a.rating.of.1.to.10.how.likely.would.you.be.to.eat.a.cooked.cricket..an.insect.similar.to.a.grasshopper.or.locust...1"                                                                                  
## [34] "Additional.comments.please"                                                                                                                                                                                
## [35] "Debrief"

Next up the headers of the dataset are renamed to make things a little easier.

# Recoding the data for use

# Shorten some of the names
names(dat)[5] <- "Age"
names(dat)[6] <- "Sex"
names(dat)[7] <- "RWA01"
names(dat)[8] <- "RWA02"
names(dat)[9] <- "RWA03"
names(dat)[10] <- "RWA04"
names(dat)[11] <- "RWA05"
names(dat)[12] <- "RWA06"
names(dat)[13] <- "RWA07"
names(dat)[14] <- "RWA08"
names(dat)[15] <- "RWA09"
names(dat)[16] <- "RWA10"
names(dat)[17] <- "RWA11"
names(dat)[18] <- "RWA12"
names(dat)[19] <- "RWA13"
names(dat)[20] <- "RWA14"
names(dat)[21] <- "RWA15"
names(dat)[22] <- "RWA16"
names(dat)[23] <- "RWA17"
names(dat)[24] <- "RWA18"
names(dat)[25] <- "RWA19"
names(dat)[26] <- "RWA20"
names(dat)[27] <- "RWA21"
names(dat)[28] <- "RWA22"
names(dat)[29] <- "BeforeCricket"
names(dat)[30] <- "BeforeCricketBar"
names(dat)[31] <- "Group"
names(dat)[32] <- "AfterCricketBar"
names(dat)[33] <- "AfterCricket"
names(dat)[34] <- "Comments"

The Right Wing Authoritarianism scale still needs to be calculated.

We also need to calculate the changes in rating for the food types and add these to the dataset.

# Function to change the Likert results from the long form to a number
library(plyr)
likert_to_number <- function(x){
  x <- revalue(x, c("-4 You very strongly disagree with the statement."="-4",
                                    "-3 You strongly disagree with the statement. "="-3",
                                    "-2 You moderately disagree with the statement."="-2",
                                    "-1 You slightly disagree with the statement."="-1",
                                    "0 You feel exactly and precisely neutral about an item."="0",
                                    "+1 You slightly agree with the statement. "="1",
                                    "+2 You moderately agree with the statement."="2",
                                    "+3 You strongly agree with the statement. "="3",
                                    "+4 You very strongly agree with the statement."="4"
 )   )
  
  return(x)
}

dat$RWA01 <- likert_to_number(dat$RWA01)
dat$RWA02 <- likert_to_number(dat$RWA02)
dat$RWA03 <- likert_to_number(dat$RWA03)
dat$RWA04 <- likert_to_number(dat$RWA04)
dat$RWA05 <- likert_to_number(dat$RWA05)
dat$RWA06 <- likert_to_number(dat$RWA06)
dat$RWA07 <- likert_to_number(dat$RWA07)
dat$RWA08 <- likert_to_number(dat$RWA08)
dat$RWA09 <- likert_to_number(dat$RWA09)
dat$RWA10 <- likert_to_number(dat$RWA10)
dat$RWA11 <- likert_to_number(dat$RWA11)
dat$RWA12 <- likert_to_number(dat$RWA12)
dat$RWA13 <- likert_to_number(dat$RWA13)
dat$RWA14 <- likert_to_number(dat$RWA14)
dat$RWA15 <- likert_to_number(dat$RWA15)
dat$RWA16 <- likert_to_number(dat$RWA16)
dat$RWA17 <- likert_to_number(dat$RWA17)
dat$RWA18 <- likert_to_number(dat$RWA18)
dat$RWA19 <- likert_to_number(dat$RWA19)
## The following `from` values were not present in `x`: +4 You very strongly agree with the statement.
dat$RWA20 <- likert_to_number(dat$RWA20)
dat$RWA21 <- likert_to_number(dat$RWA21)
dat$RWA22 <- likert_to_number(dat$RWA22)


# Next lets score the RWA results

# Scores go from 20 to 180
# Question 1 and 2 are test questions and not used
# Positive scores are 3, 5, 7, 10, 12, 14, 16, 17, 19 and 22 
# Add all the positive scores and add 50
# The remainder are reversed questions, we could recode but its easier to do the following
# Start with 50 and substract the total of the negative scores

dat$RWAscore <- 100 + as.numeric(as.character(dat$RWA03)) + as.numeric(as.character(dat$RWA05)) + 
  as.numeric(as.character(dat$RWA07)) + as.numeric(as.character(dat$RWA10)) + as.numeric(as.character(dat$RWA12)) + 
  as.numeric(as.character(dat$RWA14)) + as.numeric(as.character(dat$RWA16)) + as.numeric(as.character(dat$RWA17)) + 
  as.numeric(as.character(dat$RWA19)) + as.numeric(as.character(dat$RWA22)) - as.numeric(as.character(dat$RWA04)) - 
  as.numeric(as.character(dat$RWA06)) - as.numeric(as.character(dat$RWA08)) - as.numeric(as.character(dat$RWA09)) - 
  as.numeric(as.character(dat$RWA11)) - as.numeric(as.character(dat$RWA13)) - as.numeric(as.character(dat$RWA15)) - 
  as.numeric(as.character(dat$RWA18)) - as.numeric(as.character(dat$RWA20)) - as.numeric(as.character(dat$RWA21))

# Calculate the changes in rating
dat$CricketChange <- dat$AfterCricket - dat$BeforeCricket
dat$BarChange <- dat$AfterCricketBar - dat$BeforeCricket

# Return the updated names of the dataset
names(dat)
##  [1] "Id"               "Start.Date"       "Submit.Date"     
##  [4] "IP"               "Age"              "Sex"             
##  [7] "RWA01"            "RWA02"            "RWA03"           
## [10] "RWA04"            "RWA05"            "RWA06"           
## [13] "RWA07"            "RWA08"            "RWA09"           
## [16] "RWA10"            "RWA11"            "RWA12"           
## [19] "RWA13"            "RWA14"            "RWA15"           
## [22] "RWA16"            "RWA17"            "RWA18"           
## [25] "RWA19"            "RWA20"            "RWA21"           
## [28] "RWA22"            "BeforeCricket"    "BeforeCricketBar"
## [31] "Group"            "AfterCricketBar"  "AfterCricket"    
## [34] "Comments"         "Debrief"          "RWAscore"        
## [37] "CricketChange"    "BarChange"

Some basic descriptive info on the data in numbers

library(psych)
describe(dat$Age)
##   vars   n  mean    sd median trimmed   mad min max range skew kurtosis
## 1    1 352 35.24 11.82     34   34.41 13.34  18  68    50 0.52    -0.35
##     se
## 1 0.63
describe(dat$BeforeCricket)
##   vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## 1    1 352 5.44 3.35      6    5.42 4.45   1  10     9 -0.03    -1.49 0.18
describe(dat$BeforeCricketBar)
##   vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## 1    1 352 6.86 3.07      8    7.18 2.97   1  10     9 -0.61       -1 0.16
describe(dat$AfterCricket)
##   vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## 1    1 352 5.64 3.4      6    5.67 4.45   1  10     9 -0.12    -1.51 0.18
describe(dat$AfterCricketBar)
##   vars   n mean sd median trimmed  mad min max range  skew kurtosis   se
## 1    1 352 7.33  3      8    7.76 2.97   1  10     9 -0.88    -0.57 0.16
describe(dat$RWAscore)
##   vars   n  mean    sd median trimmed   mad min max range skew kurtosis
## 1    1 352 48.12 20.36     44   45.46 15.57  20 134   114 1.46     2.68
##     se
## 1 1.09
describe(dat$CricketChange)
##   vars   n mean   sd median trimmed mad min max range skew kurtosis   se
## 1    1 352  0.2 0.93      0    0.12   0  -5   6    11 0.94    13.37 0.05
describe(dat$BarChange)
##   vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## 1    1 352 1.89 2.21      1    1.63 1.48  -5   9    14 0.92     0.75 0.12

Back to the main page

Main page